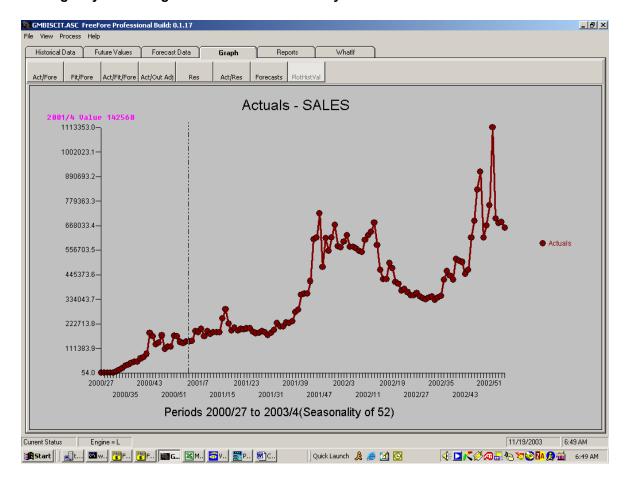


# **Forecasting Tool Solution Case Study**

#### **Customer Profile**


General Mills is a leading supplier of processed food in the United States. One of their high profile products is their Frozen Biscuit product.

Business Problems: Develop accurate forecasts and incorporate significant marketing variables (price, TV ads etc.) into a working model that would allow marketing and logistics to more effectively allocate resources.

Additionally, it was desired to detect "Peculiar data". Data is peculiar if it represents a peculiar case described by a relatively small number of objects and is very different from other objects in the data set.

By identifying the "Peculiar Data" one can then research and discover the source of the peculiarity. Step 1 is the identification of these data points.

We begin by examining the 134 week sales history from week 27 in 2002.



Actual data was available for 10 series. This is a snapshot of the first 23 weeks.

| 1  | AUP  | FSI | EASTER | TKSGVN | CHRISTMA | QM | TD | TPR | TV | SALES  |
|----|------|-----|--------|--------|----------|----|----|-----|----|--------|
| 2  |      |     |        |        |          |    |    |     | Į. |        |
| 3  |      |     |        |        |          |    |    |     |    |        |
| 4  | 2.69 | 0   | 0      | 0      | 0        | 0  | 0  | 0   | 0  | 54     |
| 5  | 2.69 | 0   | 0      | 0      | 0        | 0  | 1  | 0   | 0  | 355    |
| 6  | 2.69 | 0   | 0      | 0      | 0        | 0  | 1  | 0   | 0  | 493    |
| 7  | 2.69 | 0   | 0      | 0      | 0        | 0  | 1  | 0   | 0  | 500    |
| 8  | 2.77 | 0   | 0      | 0      | 0        | 1  | 2  | 0   | 0  | 1367   |
| 9  | 2.66 | 0   | 0      | 0      | 0        | 0  | 7  | 0   | 0  | 5922   |
| 10 | 2.85 | 0   | 0      | 0      | 0        | 0  | 12 | 0   | 0  | 13012  |
| 11 | 2.87 | 0   | 0      | 0      | 0        | 0  | 17 | 0   | 0  | 21360  |
| 12 | 2.88 | 0   | 0      | 0      | 0        | 0  | 22 | 1   | 0  | 30937  |
| 13 | 2.9  | 0   | 0      | 0      | 0        | 2  | 28 | 0   | 0  | 36928  |
| 14 | 2.91 | 0   | 0      | 0      | 0        | 2  | 33 | 1   | 0  | 45993  |
| 15 | 2.93 | 0   | 0      | 0      | 0        | 3  | 36 | 0   | 0  | 49806  |
| 16 | 3.01 | 0   | 0      | 0      | 0        | 2  | 41 | 1   | 0  | 49476  |
| 17 | 2.97 | 0   | 0      | 0      | 0        | 2  | 44 | 1   | 0  | 65058  |
| 18 | 2.93 | 0   | 0      | 0      | 0        | 1  | 47 | 2   | 0  | 70749  |
| 19 | 2.87 | 0   | 0      | 0      | 0        | 2  | 50 | 3   | 0  | 85602  |
| 20 | 2.78 | 0   | 0      | 0      | 0        | 5  | 54 | 4   | 0  | 181787 |
| 21 | 2.74 | 0   | 0      | 0      | 0        | 7  | 56 | 3   | 0  | 165470 |
| 22 | 2.81 | 0   | 0      | 0      | 0        | 4  | 57 | 5   | 0  | 128660 |
| 23 | 2.89 | 0   | 0      | 0      | 0        | 3  | 61 | 4   | 0  | 135896 |
| 24 | 2.87 | 0   | 0      | 1      | 0        | 4  | 63 | 4   | 0  | 169571 |
| 25 | 2.9  | 0   | 0      | 0      | 0        | 3  | 60 | 3   | 0  | 107621 |
| 26 | 2.92 | 0   | 0      | 0      | 0        | 3  | 62 | 4   | 0  | 118029 |

General Mills marketers drive sales through their retail outlets by aggressive pricing and through a number of marketing initiatives including TV campaigns and other sales motivational programs. Sales of this product are quite seasonal and are impacted by a number of causal variables. General Mills desired to measure the historical impact on sales as a result of these variables and to develop a "what if?" functionality in order to more accurately forecast and control future sales.

There were three Holiday Variables under investigation, Price (AUP), # of Outlets (TD) and four other marketing type variables namely FSI,QM,TPR and TV.

The Final Model developed using AUTOBOX was

```
Y(T) = .92863E+06
            +[X1(T)][(- .16483E+06
                                                          )]
            +[X2(T)][(+ 1.0459 )]
            +[X3(T)][(+ 35358.
                                                          )]
            +[X4(T)][(+ 5482.5
                                                          )]
            +[X5(T)][(+ 3019.9
                                                          )]
            +[X6(T)][(+ 4107.7
                                                          -) 1
            +[X7(T)][(+ .31251E+06
+[X8(T)]](+ .10303E+06
+[X9(T)]](+ .26597E+06
+[X10(T)](- .14536E+06
+[X11(T)](- 55156.
+[X12(T)](+ 43341.
                                                         )]
                                                          1.1
                                                          )]
                                                          )]
                                                          )]
                                                          )]
            +[X13(T)[(+ 92289.
                                                          )]
            +[X14(T)[(- 52403. )]
+ [(1- .981B** 1)]**-1 [A(T)]
              Analysis for Variable
                                                                         Y = SALES
                                                                         X1 = AUP
                                                                         X2 = FSI
                                                                         X3 = MOVE XMAS
                                                                         X4 = QM
                                                                         X5 = TPR
                                                                         X6 = TV
                   : NEWLY IDENTIFIED VARIABLE X7 = I~P00130
                                                                                                                   PHLSE
                  : NEWLY IDENTIFIED VARIABLE X8 = I~P00078
: NEWLY IDENTIFIED VARIABLE X9 = I~P00126
: NEWLY IDENTIFIED VARIABLE 10 = I~P00074
: NEWLY IDENTIFIED VARIABLE 11 = I~P00090
: NEWLY IDENTIFIED VARIABLE 12 = I~P00041
: NEWLY IDENTIFIED VARIABLE 13 = I~P00125
: NEWLY IDENTIFIED VARIABLE 14 = I~P00117
                                                                                                                   PULSE
                                                                                                                   PULSE
                                                                                                                   PULSE
                                                                                                                   PULSE
                                                                                                                   PULSE
                                                                                                                   PULSE
                                                                                                                    PULSE
                                                Y = SALES
Analysis for Variable
                                                X1 = AUP
                                                X2 = FSI
                                                X3 = MOVE_XMAS
                                                X4 = QM
                                                X5 = TPR
```

X6 = TV

X7 = I~P00130

X9 = I~P00126

10 = I~P00074

X8 = I~P00078

11 = I~P00090 12 = I~P00041

13 = I~P00125 14 = I~P00117

: NEWLY IDENTIFIED VARIABLE

PULSE

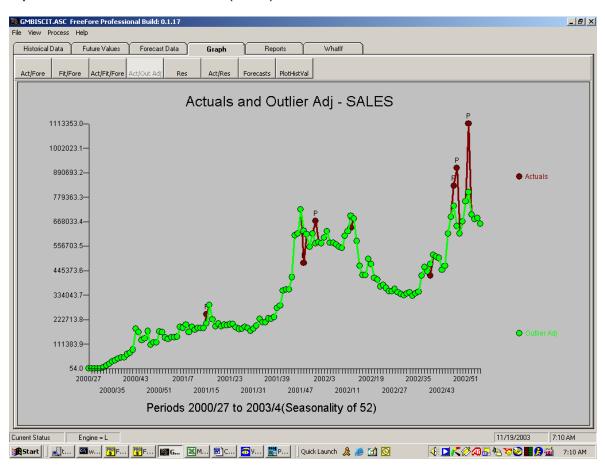
PULSE

PULSE

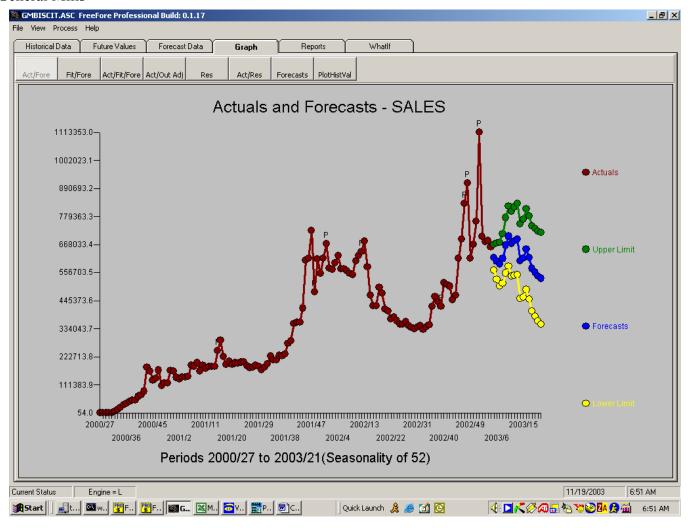
PULSE

PULSE

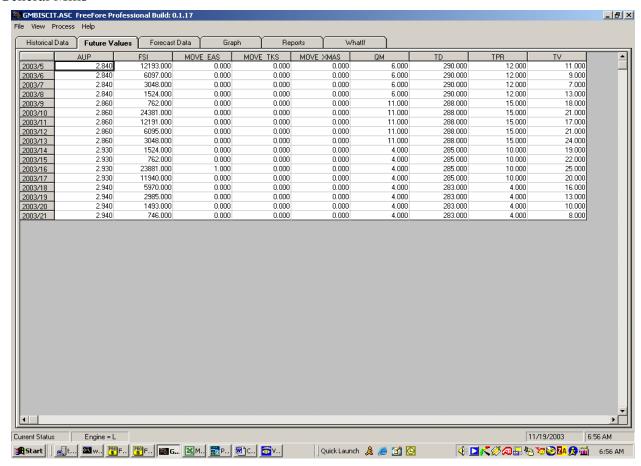
PULSE


PULSE

PULSE

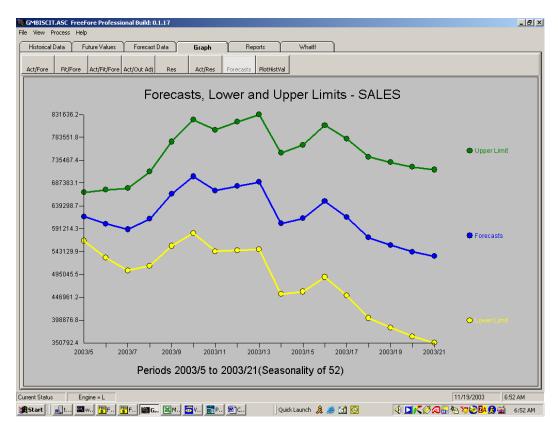

```
Y(T) = .92863E+06
      +[X1(T)][(- .16483E+06
                                 )]
      +[X2(T)][(+ 1.0459 )]
      +[X3(T)][(+ 35358.
                                 )]
      +[X4(T)][(+ 5482.5
                                 )]
      +[X5(T)][(+ 3019.9
                                 11
      +[X6(T)][(+ 4107.7
                                 11
      +[X7(T)][(+ .31251E+06
                                 )]
      +[X8(T)][(+ .10303E+06
                                 )]
      +[X9(T)][(+ .26597E+06
                                 )]
      +[X10(T)[(-
                   .14536E+06
                                 )]
      +[X11(T)[(- 55156.
                                 )]
      +[X12(T)[(+ 43341.
                                 )]
      +[X13(T)[(+ 92289.
                                 11
      +[X14(T)[(- 52403.
                                 )]
           [(1- .981B** 1)]**-1 [A(T)]
```

where eight "Peculiar Data Points" were identified as "Newly Identified Variables" and two holidays and one of the marketing variables were deleted as not being statistically significant. If you don't account for outliers then your model will not be robust for forecasting anything!

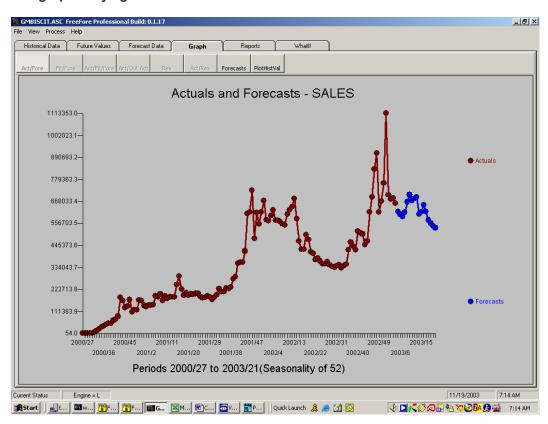

A peek at the Peculiar Data Points (in red) ...



This Model was then used to make a projection for the next 17 weeks.




Of course forecasts require the user to specify the future values of the significant cause variables including Price.




## **Yielding**

|         | SALES      |
|---------|------------|
|         |            |
| 2003/5  | 616525.668 |
| 2003/6  | 601391.581 |
| 2003/7  | 589454.579 |
| 2003/8  | 611984.068 |
| 2003/9  | 664388.082 |
| 2003/10 | 700911.405 |
| 2003/11 | 671237.156 |
| 2003/12 | 680807.461 |
| 2003/13 | 689468.166 |
| 2003/14 | 601854.074 |
| 2003/15 | 612922.361 |
| 2003/16 | 648976.757 |
| 2003/17 | 615508.275 |
| 2003/18 | 572632.991 |
| 2003/19 | 556763.481 |
| 2003/20 | 542463.482 |
| 2003/21 | 533058.185 |



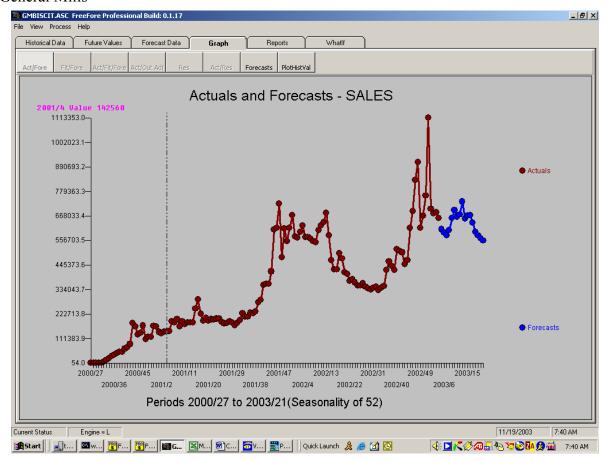
#### and graphically again.



In order to demonstrate the "what if?" capability, we elect to evaluate the impact of Price (AUP) on our forecasts. Using the pop-up menu we simply change our price points.

The price points used in the preceeding analysis for the next 17 weeks were

2.84 week 1-4; 2.86 week 5-9; 2.93 week 10-13 and 2.94 week 14-17


|         | AUP   |
|---------|-------|
| 2003/5  | 2.840 |
| 2003/6  | 2.840 |
| 2003/7  | 2.840 |
| 2003/8  | 2.840 |
| 2003/9  | 2.860 |
| 2003/10 | 2.860 |
| 2003/11 | 2.860 |
| 2003/12 | 2.860 |
| 2003/13 | 2.860 |
| 2003/14 | 2.930 |
| 2003/15 | 2.930 |
| 2003/16 | 2.930 |
| 2003/17 | 2.930 |
| 2003/18 | 2.940 |
| 2003/19 | 2.940 |
| 2003/20 | 2.940 |
| 2003/21 | 2.940 |

Now consider a different set of price points including an aggressive price cut for weeks 9-11 to 2.6 in order to ramp up sales. We leave all other variables the same in order to illustrate the functionality.

|         | AUP   |
|---------|-------|
| 2003/5  | 2.900 |
| 2003/6  | 2.900 |
| 2003/7  | 2.900 |
| 2003/8  | 2.900 |
| 2003/9  | 2.900 |
| 2003/10 | 2.900 |
| 2003/11 | 2.900 |
| 2003/12 | 2.900 |
| 2003/13 | 2.600 |
| 2003/14 | 2.600 |
| 2003/15 | 2.600 |
| 2003/16 | 2.800 |
| 2003/17 | 2.800 |
| 2003/18 | 2.800 |
| 2003/19 | 2.800 |
| 2003/20 | 2.800 |
| 2003/21 | 2.800 |

| GMBISCIT.ASC FreeFore Professional Build: 0.1.17 |     |                      |           |           |        |          |
|--------------------------------------------------|-----|----------------------|-----------|-----------|--------|----------|
| File View Process Help                           |     |                      |           |           |        |          |
| Historic Run<br>RunWhatIf                        |     | Values Forecast Data |           | ata Graph | Report | S WhatIf |
| _                                                | AUP | ,                    | FSI       | QM        | TPR    | TV       |
| 2003/5                                           |     | 2.900                | 12193.000 | 6.000     | 12.000 | 11.000   |
| 2003/6                                           |     | 2.900                | 6097.000  | 6.000     | 12.000 | 9.000    |
| 2003/7                                           |     | 2.900                | 3048.000  | 6.000     | 12.000 | 7.000    |
| 2003/8                                           |     | 2.900                | 1524.000  | 6.000     | 12.000 | 13.000   |
| 2003/9                                           |     | 2.900                | 762.000   | 11.000    | 15.000 | 18.000   |
| 2003/10                                          | )   | 2.900                | 24381.000 | 11.000    | 15.000 | 21.000   |
| 2003/11                                          | 1   | 2.900                | 12191.000 | 11.000    | 15.000 | 17.000   |
| 2003/12                                          | 2   | 2.900                | 6095.000  | 11.000    | 15.000 | 21.000   |
| 2003/13                                          | 3   | 2.600                | 3048.000  | 11.000    | 15.000 | 24.000   |
| 2003/14                                          | 1   | 2.600                | 1524.000  | 4.000     | 10.000 | 19.000   |
| 2003/15                                          | 5   | 2.600                | 762.000   | 4.000     | 10.000 | 22.000   |
| 2003/16                                          | 6   | 2.900                | 23881.000 | 4.000     | 10.000 | 25.000   |
| 2003/17                                          | 7   | 2.900                | 11940.000 | 4.000     | 10.000 | 20.000   |
| 2003/18                                          | 3   | 2.900                | 5970.000  | 4.000     | 4.000  | 16.000   |
| 2003/19                                          | 3   | 2.900                | 2985.000  | 4.000     | 4.000  | 13.000   |
| 2003/20                                          | )   | 2.900                | 1493.000  | 4.000     | 4.000  | 10.000   |
| 2003/21                                          | 1   | 2.900                | 746.000   | 4.000     | 4.000  | 8.000    |

|         | SALES      |
|---------|------------|
| 2004/25 | 606635.692 |
| 2004/26 | 591501.604 |
| 2004/27 | 579564.603 |
| 2004/28 | 602094.092 |
| 2004/29 | 657794.765 |
| 2004/30 | 694318.087 |
| 2004/31 | 664643.839 |
| 2004/32 | 674214.144 |
| 2004/33 | 732324.730 |
| 2004/34 | 656248.943 |
| 2004/35 | 667317.230 |
| 2004/36 | 670405.039 |
| 2004/37 | 636936.557 |
| 2004/38 | 595709.603 |
| 2004/39 | 579840.093 |
| 2004/40 | 565540.094 |
| 2004/41 | 556134.797 |



#### Solution

The modeling and forecasting solution used was Autobox.

Autobox was chosen because it customizes the forecasting equation to the data exploiting profiles and models dependent on a number of variables. Furthermore it captures the lead, contemporaneous and lag structures for events and holiday variables while incorporating level shifts, local time trends and eliminating spurious impacts assignable to outliers/inliers. Additionally it pinpoints the "Peculiar Data" thus drawing attention to omitted variables just waiting to be discovered so that future forecasts will be even more accurate exploiting this acquired knowledge. To learn more about these models and how to build them please see the AFS tutorial on comparing Regression and Box-Jenkins.

## **Expected Benefits of solution implemented**

- Increase revenue by identifying the important driving variables.
- Better planning due to knowledge acquired as to how and when to price the product which is a key goal of General Mills
- Expanded awareness of Outliers and Inliers. The problem is that you can't catch an outlier without a model (at least a mild one) for your data. Else how would you know that a point violated that model? In fact, the process of growing understanding and finding and examining outliers must be iterative. This isn't a new thought. Bacon, writing in Novum Organum about 400 years ago said: "Errors of Nature, Sports and Monsters correct the understanding in regard to ordinary things, and reveal general forms. For whoever knows the ways of Nature will more easily notice her deviations; and, on the other hand, whoever knows her deviations will more accurately describe her ways."

Filename: Case\_Studies\_-\_General\_Mills\_Frozen\_Biscuits.doc

Directory: F:\wa\digitalpathways\AFS

Template: C:\Documents and Settings\hricage.DPCSRV\Application

 $Data \backslash Microsoft \backslash Templates \backslash Normal.dot$ 

Title: Goodyear Subject: Cases Study

Author: Ron Schornstein. Mariano kruskevich

Keywords: Comments:

Creation Date: 12/1/2003 9:39 PM

Change Number: 3

Last Saved On: 12/1/2003 9:40 PM Last Saved By: Georgina Hricak

Total Editing Time: 1 Minute

Last Printed On: 12/1/2003 9:40 PM

As of Last Complete Printing Number of Pages: 10

> Number of Words: 645 (approx.) Number of Characters: 3,680 (approx.)