DOING HARD TIME

Prepared for the Corrections Statistics Program Panel Bureau of Justice Statistics October 6, 2004 Washington D.C.

David P. Reilly Automatic Forecasting Systems Inc. P.O. Box 563 Hatboro, Pa 19040 215-675-0652

DOING HARD TIME SERIES

Prepared for the Corrections Statistics Program Panel Bureau of Justice Statistics October 6, 2004 Washington D.C.

David P. Reilly Automatic Forecasting Systems Inc. P.O. Box 563 Hatboro, Pa 19040 215-675-0652

Contact Information for Dave Reilly

 Automatic Forecasting Systems, Inc. (AFS) P.O. Box 563 Hatboro, PA 19040 Phone: 215-675-0652 Fax: 215-672-2534 email: dave@Autobox.com Web Site: www.Autobox.com

You Can Relax Help Is On The Way

Forecasting History is Always Easier Than Forecasting The Future

Abraham Lincoln (1809 - 1865) said:

"If we could first know where we are, then whither we are tending, we could then decide what to do and how to do it."

Data recorded sequentially through time is called "Time Series Data".

The analysis of time series data must use special statistical techniques, called "Time Series Techniques".

If only we had known sooner....

How Would This Be Accomplished ?

By computing the probability of observing what was observed !

Early Warning Systems

Early warning systems should not simply detect high and low values, but should detect unusual activity inconsistent with expectations.

Statistical packages have enormous influence over analysis, especially over that of the less sophisticated user. There is a tendency for the user to do what is readily available in their software.

Typical Hierarchy of Methods

Qualitative

Judgmental

Analogical

Typical Hierarchy of Methods

Quantitative: Time Series Analysis
Smoothing
Trend Decomposition
Decomposition (e.g. Seasonal)
Box-Jenkins & Autoregressive Models

Typical Hierarchy of Methods

Quantitative: Causal Modeling
 Linear Regression
 Multiple Regression
 Econometric Modeling

A More Precise View of the Hierarchical Structure Qualitative Judgmental Analogical Quantitative: Time Series Analysis Causal Modeling Memory or Smoothing Models **Trend Decomposition**

A More Precise View of the Hierarchical Structure Qualitative Judgmental Analogical Quantitative: Time Series Analysis Causal Memory Dummy

State-of-the-Art Modeling Procedures Optimally Combine Three Kinds of Structures

 $Y_t = Causal + Memory + Dummy$

Future Value (at time t) of Variable of Interest

Using possible explanatory variables such as
Temperature
Unemployment Rates
Labor Force Size etc.

Using historical values such as Intakes last month, a year ago at this time, perhaps a rateof-change statistic embodying the autoprojective pattern.

Memory by itself is sometimes incorrectly referred to as Time Series Analysis, whereas TSA in it's larger definition encompasses both Causals and Dummy Variables

DUMMY

Using Month-of-the Year Profiles, Growth Patterns over Time (Level Shifts and/or Local Time Trends).

Let's Review How These Components Have Been Used

Y_t = Causal + Memory + Dummy

Forecasting History (CAUSAL)

Sir Francis Galton

- Tropical Explorer
- Eugenicist
- Statistician
- Anthropologist
- Criminologist
- Hereditarian
- Half-cousin of Charles Darwin
- Psychologist

Galton on Correlation

- December 1888, Galton's "Co-relations and their measurement, chiefly from anthropometric data"
- If both measurements (midparent and child's height) were expressed in terms of their probable errors, then both regression lines had same slope r (closeness of co-relation).
- In addition, "co-relation" was originally used because "correlation" was taken and had different meaning.

Galton's Problem where Sample 1 might be Arkansas, Sample 2 New York etc.

Cross-Sectional Data

U		Characteristics			
Ν		(Measurements)			
С		А	в	Z	
0	Independent Sample 1	X1A	X1B	X1Z	
R	Independent Sample 2	X2A	X2B	X2Z	
R					
Е					
L					
А					
Т					
Е	Independent Sample N	XNA	XNB	XNZ	
D					

Galton's Solution

A More Common Problem where Sample 1 is Jan, 2002, Sample 2 Feb, 2002, etc.

Time Series Data

		Characteristics		
		(Measurements)		
С		А	в	Z
0	Correlated Sample 1	X1A	X1B	X1Z
R	Correlated Sample 2	X2A	X2B	X2Z
R				
Е				
L				
А				
Т				
Е	Correlated Sample N	XNA	XNB	XNZ
T				

Flawed When Applied To Time Series Data

A source for spurious correlation is a common cause acting on the variables.

In the recent *spurious regression* literature in time series econometrics (Granger & Newbold, *Journal of Econometrics*, 1974) the misleading inference comes about through applying the regression theory for stationary series to non-stationary series.

Flawed When Applied To Time Series Data

The dangers of applying the regression theory for stationary series to non-stationary series were pointed out by G. U. Yule in his 1926 "Why Do We Sometimes Get Nonsense Correlations between Time-series? A Study in Sampling and the Nature of Time-series," *Journal of the Royal Statistical Society*, **89**, 1-69. Some Examples of the misuse of Regression/Correlation

IQ and Foot Size seem to be related
The more fireman at a fire, the more damage is reported

 The number of Churches in a town seem to be related to the number of Bars.

 Babies Per Capita seems to be related to Storks Per Capita.

Flawed When Applied To Time Series Data (2)

More generally the misleading inference comes about through applying the regression theory for stationary series to series that have auto-regressive structure.

Recognizing this, early researchers attempted to extract the within relationship (autoregressive structure) and then proceed to examine crosscorrelative (among) relationships.

Flawed When Applied To Time Series Data (3)

Initial attempts to adjust for within relationships included "de-trending" and/or differencing.

Both are usually presumptive and often lead to "Model Specification Bias".

Flawed When Applied To Time Series Data (3)

Box and Jenkins codified this process by recognizing that an ARIMA filter is the optimum transform to extract the "within structure" prior to identifying the "among structure".

They pointed out that both "de-trending" and "differencing" are particular cases of a filter, whose optimized form is an ARMAX model potentially containing both ARIMA and Dummy Variables such as Trends.

How to Identify the Relationship

The first step to this process is to develop an ARIMA model for each of the user-specified input time series in the equation.

Each series must then be made stationary by applying the appropriate differencing and transformation parameters from its ARIMA model.

How to Identify the Relationship

Each input series is prewhitened by its own ARIMA model AR (autoregressive) and MA (moving average) factors.

The output series is filtered by the input series AR and MA factors.

The cross correlations between the prewhitened input and output reveal the extent of this interrelationship.
Why We Filter to Identify

- $Y(_t) = W(B)X(_t) + V(_t)$ (equation 1)
- Now if $X(_t) = [t(B)/p(B)]x(_t)$ then $x(_t) = [p(B)/t(B)]X(_t)$
- Using [p(B)/t(B)] on equation (1) we get
- [p(B)/t(B)] Y(t) = W(B) [p(B)/t(B)] X(t) + [p(B)/t(B)] V(t) or
- y(t) = W(B) x(t) + W(t) (equation 2)
- Enabling the identification of W(B) since x(t) is a white noise process and cross-correlations between y(t) and x(t) are meaningful as compared to the useless cross-correlations between Y(t) and X(t)
- Note that [p(B)/t(B)] plays no role in W(B)

If x(,) and y(,) are bivariate normal (implies no ARIMA structure within x and within y) then

$$\rho = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}}$$

Let's Review How These Components Have Been Used

 $Y_t = Causal + Memory + Dummy$

Historical development of Memory

a)
$$Y_{N+1} = (1/N)^* Y_1 + (1/N)^* Y_2 + (1/N)^* Y_3 + \dots (1/N)^* Y_N$$

b)
$$Y_{N+1} = (1/J)^* Y_N + (1/J)^* Y_{N-1} + (1/J)^* Y_{N-2}$$
 where J=3

c) $Y_{N+1} = .6*Y_N + .3*Y_{N-1} + .1*Y_{N-2}$ where .6, 3, 1 are the weights

a)
$$Y_{N+1} = (1/N)^* Y_1 + (1/N)^* Y_2 + (1/N)^* Y_3 + \dots (1/N)^* Y_N$$

b) $Y_{N+1} = (1/J)^* Y_N + (1/J)^* Y_{N-1} + (1/J)^* Y_{N-2}$ where J=3

c) $Y_{N+1} = .6^*Y_N + .3^*Y_{N-1} + .1^*Y_{N-2}$ where .6, .3, .1 are the weights

d) $Y_{N+1} = C1^*Y_N + C2^*Y_{N+1} + C3^*Y_{N+2} + CK^*Y_{N+K}$ where C1,C2,C3

are the weights for example: $C1 = .8, C2 = .2^{*}.8, C3 = .2^{*}.2^{*}.8, etc. CK = .2^{(K-1)}.8$

C1 = .8 C2 = .16 C3 = .032

Consider an "N Period" Equally Weighted Model

$$Y_{N+1} = (1/N)^* Y_1 + (1/N)^* Y_2 + (1/N)^* Y_3 + \dots \dots (1/N)^* Y_N$$

$$Y_{N+1} = (1/N)^* Y_1 + (1/N)^* Y_2 + (1/N)^* Y_3 + \dots \dots (1/N)^* Y_N$$

The Mechanics of a 60 day Weighted Average

If you wished to use a 60 period equal weighted average you would need to have available the most recent 60 values. In the early days of computing storage was a major problem thus Statistical Innovation was in order. Relationship Between Number of Observations in an Equally Weighted Average and The Exponential Model Smoothing Coefficient in terms of Average Age of the Data

Number of	Variance of	Smoothing
Observations	Estimate	Constant
3	0.333	0.5
4	0.25	0.4
5	0.2	0.333
5.67	0.177	0.3
6	0.167	0.286
9	0.111	0.2
12	0.083	0.154
18	0.056	0.105
19	0.053	0.1
24	0.042	0.08
39	0.026	0.05
52	0.019	0.038
199	0.005	0.01

R.G. Brown in 1961 developed the concept of capturing historical data in a forecast and then using that forecast and an adjustment for the last error to get a new forecast.

Y(new)=(1-a)*Y(old)+a*error

There was no theoretical development used just the idea that one could quickly compute an updated forecast and only two values were required to be stored.

The Previous Forecast
 The Smoothing Coefficient(a)

In terms of selecting the appropriate Smoothing Coefficient, one was told to try different values between 0. and 1.0 and see which one you like best. Failing that you could call NYC and find out what they liked !

This method had an intuitive appeal as it was equivalent to exponentially forgetting the past or equivalently equally weighting a recent set without having to store all the data. The IT folks just loved it as it was fast and efficient if not as accurate as could be developed

The Family Tree

In 1957, Julius Shiskin developed an ad hoc approach to computing a Seasonal Factor. This was not based on mathematical/statistical theory but rather on an arithmetic/simple approach , full of assumptions, to computing a weighted average. His procedure was called X11 and is widely used.

In 1963 Box and Jenkins suggested using lagged correlation coefficients to IDENTIFY the nature of the required memory structure rather than assuming it as Brown and Shiskin had.

Box was quoted as saying that his method would have been more aptly named "X12" since X11 is a particular subset and he drew heavily on the inspiration of Shiskin while generalizing and objectifying the analysis.

The relatively intense pattern identification strategy suggested the need to mechanize the process.

This lead rather naturally into pattern recognition schemes to automatically identify the form of the models. AUTOBOX was introduced in the early 70's

The "technical approach method" popular in the financial markets is a form of ARIMA or Autoprojective Modelling.

Similarly "The Rate of Change" Procedures are also a form of ARIMA. For example Smoothed Rate of Change (SROC) first calculates a 13-day <u>exponential moving</u> <u>average</u> of closing price. Then calculate a 21-day <u>Rate of Change</u> of the exponential moving average.

A Memory Model is a "Poor Man's Causal Model"

If Y(T) = f[X(T)](1)Then Y(T-1) = f[X(T-1)](1A)and inverting we get X(T-1) = g[Y(T-1)] (1B) Now, if X(T) = h [X(T-1)](2)then using (1B) we get X(T) = i [Y(T-1)] (3) Substituting (3) into Equation (1) for X(T) yields Y(T) = j [Y(T-1)](4)Thus the History of a series can be a proxy for an omitted Causal Series

Let's Review How These Components Have Been Used

 $Y_t = Causal + Memory + Dummy$

Historical development of Dummy

Early researchers assumed Trend Models and Additive Seasonal Factors like the Holt-Winters Class of Models. Again identification was bypassed and Estimation was conducted based upon an assumed model.

No thought was given to distinguishing between Level and Trend Changes or the detection of break points in trends. No consideration was given to detecting the onset of "seasonal factors"

Intervention Detection schemes introduced in the early 1980's suggested the empirical construct of Dummy Variables. Dummy Variables are related to Trends and Level Shifts

The Family of Dummy Variables

Pulse Level Shift $Z_{t} = 0,0,0,0,1,0,0,0$ $Z_{t} = 0,0,0,0,1,1,1,1,1,1,...,$

Pulse

Level Shift

The Family of Dummy Variables

Seasonal Pulse Time Trend $Z_{t} = 0,1,0,0,0,1,0,0,0,1,...,$ $Z_{t} = 0,0,0,0,1,2,3,4,5,...,$

Seasonal Pulse

Time Trend

Outliers

- One time events that need to be "corrected for" in order to properly identify the general term or model
- Consistent events (i.e. holidays, events) that should be included in the model so that the future expected demand can be tweaked to anticipate a pre-spike, post spike or at the moment of the event spike.
- If you can't identify the reason for the outlier than you will not get to the root of the process relationship and be relegated to the passenger instead of the driver

OUTLIERS: WHAT TO DO ABOUT THEM?

- OLS procedures are INFLUENCED strongly by outliers. This means that a single observation can have excessive influence on the fitted model, the significance tests, the prediction intervals, etc.
- Outliers are troublesome because we want our statistical models to reflect the MAIN BODY of the data, not just single observations.

 Z_t represents a pulse or a one-time intervention at time period 6. $Z_t = 0,0,0,0,0,1,0,0,0$

Modeling Interventions -Level Shift

If there was a level shift and not a pulse then it is clear that a single pulse model would be inadequate thus $Y_t = BO + B3Z_t + U_t$

> Assume the appropriate Z_t is $Z_t = 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, \dots, T$ or $Z_t = 0$ t < i $Z_t = 1$ t > i-1

Modeling Interventions -Seasonal Pulses

There are other kinds of pulses that might need to be considered otherwise our model may be insufficient. For example, December sales are high.

The data suggest this model

 $Y_t = BO + B3Z_t + U_t$

 $Z_t = 0$ i <>12,24,36,48,60

 $Z_t = 1$ i = 12,24,36,48,60

Modeling Interventions – Local Time Trend

The fourth and final form of a deterministic variable is the the local time trend. For example,

1..... i-1, I,,, T

The appropriate form of Z_t is $Z_t = 0$ t < i $Z_t = 1$ (t-(i-1)) * 1 >= i $Z_t = 0,0,0,0,0,0,1,2,3,4,5,...,$

Intervention Model

Response Function

(Describes the timing and form of the intervention)

Error Component

(Accounts for underlying ARIMA structure of the time-series)

is an intervention variable and

$$Z_{t} = \frac{\frac{\omega(B)B^{b}}{\delta(B)}I_{t}}{\frac{\theta(B)}{\phi(B)(1-B)^{d}}a_{t}}$$

where

$$\omega(B) = \omega_0 - \omega_1 B - \dots - \omega_s B^s,$$

$$\delta(B) = 1 - \delta_1 B - \dots - \delta_r B^r,$$

$$a_t \text{ is a zero mean white noise process.}$$

and b is the time delay for the intervention effect.

And, $\theta(B) = (1 - \theta_1 B - ... - \theta_q B^q),$ $\phi(B) = (1 - \phi_1 B - ... - \phi_p B^p),$ and *d* is the level of differencing applied to the series.

The advantages of a timeseries Box-Jenkins approach versus a classic multiple regression approach are:

Omitted stochastic series can be proxied with the ARIMA structure
Omitted Deterministic series can be empirically identified (Intervention Detection)

- The form of the seasonality can either be auto-projective
 - (i.e. project from seasonal lags) or use one or more Seasonal Dummies versus using them all.
- Furthermore the intensity of the seasonal factors may have changed over time.

 The form of the non-stationarity can be one or more local trends and/or level shifts or differencing versus the assumption of one monotonic trend

- The form of the relationship can be either fixed for a number of periods or dynamic (ripple effect)
- It can have a period of delay as compared to a pure fixed effect (i.e. change in x immediately effects y but no other y)

From <u>500 Miles High</u> This is a Straight-forward Business Intelligence Problem

 We observe Intake Data for a particular geographical area for a number of months. We know what some other demographic variables were.

We know what the weather was.

From <u>0 Miles High</u> This is a Difficult Statistical Modeling Problem !

- What we don't know is which of the known variables have an effect and the temporal form of that effect.
- We don't know how to use historical values of Intake, if at all.
- We don't know if there is a month-of-the-year effect.
- We don't know about the effect of unusual activity that may have occurred during the observed history.

- Determine which of the user-suggested input series are statistically significant and what lags are appropriate.
- Determine what lags are needed of the output series
- Determine how the variability changes over time
- Determine how the parameters change over time
- Determine if the model/parameters differ by geographical area.

Traditional techniques assumed a Model and then selected that model that was deemed the "best".

Textbook Example (Bad)

How do Seasonal Factor models get Fooled?

•y(t) = b0 + b1*t where t is time one generates t residuals or errors

•a(1),a(2),a(3)....a(27) . If one were then to average a(1)+a(13)+a(25) to get a January effect and similarly for each of the other other 11 months, then one would get a "seasonal forecast" all without any formal test of seasonality

•Unusual values become part of the Seasonal Process rather than being isolated or identified as being exceptional.

AUTOBOX MODEL

An Illustrative Example From The DC Department of Corrections. View Options Process Help

orical [)ata	Future Values	Forecast Data	Graph	Graph 🍸 Re		WhatIf			
	TOTA	L INTAKES	TOTALREPCRIM	TOTALCAS	SES	LABO	r Force	UNEMPLOYMEN	TEMP+DEF F	RÍ▲
02/1	1	419.00000000	3317.0000000	00 1528.00	000000	3028	329.00000000	6.8000000	41.60000000	62.0
32/2	1	380.00000000	3017.0000000	00 1399.00	000000	3022	288.00000000	7.0000000	42.60000000	52.0
32/3	1	255.00000000	3213.000000	00 1605.00	000000	3033	331.00000000	6.3000000	47.70000000	63.0
32/4	1	309.00000000	3103.000000	00 1498.00	000000	303	02.00000000	5.7000000	60.0000000	63.0
02/5	1	380.00000000	3361.000000	00 1750.00	000000	3014	14.00000000	6.1000000	65.2000000	66.0
32/6	1	377.00000000	3235.0000000	00 1711.00	000000	3077	704.00000000	7.0000000	76.1000000	65.0
32/7	1	541.00000000	3260.000000	00 1818.00	000000	3130	000.00000000	6.8000000	80.9000000	62.0
02/8	1	577.00000000	3438.0000000	00 1896.00	000000	3054	\$67.00000000	6.3000000	81.10000000	66.0
02/9	1	317.00000000	3215.0000000	00 1363.00	000000	299	518.00000000	6.2000000	73.0000000	71.0
02/10	1	453.00000000	3822.0000000	00 1607.00	000000	299	505.00000000	6.3000000	58.7000000	81.0
02/11	1	425.00000000	3919.0000000	00 1491.00	000000	3002	200.00000000	6.3000000	47.10000000	78.0
02/12	1	430.00000000	3772.0000000	00 1440.00	000000	2983	371.00000000	6.2000000	37.20000000	69.0
03/1	1	432.00000000	3438.000000	00 1528.00	000000	2966	619.00000000	6.5000000	31.10000000	64.0
03/2	1	125.00000000	2383.000000	00 1399.00	000000	2993	382.00000000	7.1000000	33.70000000	63.0
03/3	1	375.00000000	3239.0000000	00 1605.00	000000	3017	765.00000000	6.3000000	47.10000000	60.0
03/4	1	330.00000000	3425.0000000	00 1498.00	000000	300	76.00000000	6.5000000	55.10000000	60.0
03/5	1	396.00000000	3695.0000000	00 1750.00	000000	3004	\$69.00000000	6.1000000	61.70000000	66.0
03/6	1	455.00000000	3715.0000000	00 1711.00	000000	3087	740.00000000	7.3000000	71.40000000	68.0
03/7	1	505.00000000	3818.000000	00 1809.00	000000	3140	39.00000000	6.9000000	77.8000000	68.0
03/8	1	488.00000000	3599.000000	00 1896.00	000000	3060)95.00000000	7.3000000	78.8000000	70.0
03/9	1	393.00000000	3371.0000000	00 1363.00	000000	3007	750.00000000	6.7000000	70.5000000	71.0
03/10	1	516.00000000	3371.0000000	00 1607.00	000000	3029	902.00000000	7.0000000	57.5000000	70.0
03/11	1	337.00000000	3371.0000000	00 1491.00	000000	3008	315.00000000	6.9000000	53.10000000	66.0
03/12	1	290.00000000	3371.0000000	00 1440.00	000000	2956	679.00000000	6.6000000	39.2000000	66.0
04/1	1	504.00000000	3072.0000000	00 1528.00	000000	2984	\$92.00000000	6.6000000	30.6000000	64.0
04/2	1	549.00000000	2515.0000000	00 1399.00	000000	302	92.00000000	6.7000000	38.2000000	63.0
04/3	1	668.00000000	2663.0000000	00 1605.00	000000	3026	638.00000000	6.8000000	48.9000000	60.0
04/4	1	624.00000000	2757.0000000	00 1498.00	000000	3012	252.00000000	6.7000000	57.4000000	60.0
04/5	1	629.00000000	2835.0000000	00 1750.00	000000	2968	347.00000000	7.0000000	71.9000000	66.0
04/6	1	566.00000000	3097.000000	00 1711.00	000000	303	574.00000000	7.7000000	73.4000000	68.0
04/7	1	670.00000000	3078.000000	00 1809.00	000000	3079	339.00000000	8.2000000	78.6000000	68.0
04/8	1	701.00000000	2893.000000	00 1896.00	000000	300;	239.00000000	8.3000000	85.0000000	72.0

•

View Options Process Help

orical [) ata	Future Values	Forecas	t Data		Graph)́ Я	leports		WhatIf				
	T	DTALCASES	LABOR FORCE		UNEMPLOYMEN		TEMP+DEF F		F	ιH	TOTAL RELEASES			
02/1		1528.00000000	3028	29.0000	0000	6.800	000000	41.60	000000	62.	00000000	1386.0	0000000	
32/2		1399.00000000	3022	88.0000	0000	7.000	000000	42.60	000000	52.	00000000	1292.0	0000000	
32/3		1605.00000000	3033	31.0000	0000	6.300	000000	47.70	000000	63.	00000000	1371.0	0000000	
32/4		1498.00000000	3031	02.0000	0000	5.700	000000	60.00	000000	63.	00000000	1281.0	0000000	
02/5		1750.00000000	3014	414.00000000		6.1000000		65.20000000		66.	00000000	1392.0	0000000	
32/6		1711.00000000	3077	04.0000	0000	7.000	000000	76.10	000000	65.	00000000	1274.0	0000000	
32/7		1818.00000000	3130	00.0000	0000	6.8000000		80.90	000000	62.	00000000	1419.0	0000000	
32/8		1896.00000000	3054	67.0000	0000	6.3000000		81.10000000		66.0000000		1501.0	0000000	
02/9		1363.00000000	2995	18.0000	0000	6.200	000000	73.00	000000	71.	00000000	1300.0	0000000	
02/10		1607.00000000	2995	05.0000	0000	6.300	000000	58.70	000000	81.	00000000	1365.0	0000000	
02/11		1491.00000000	3002	00.0000	0000	6.300	000000	47.10	000000	78.	00000000	1294.0	0000000	
02/12		1440.00000000	2983	71.0000	0000	6.200	000000	37.20	000000	69.	00000000	1466.0	0000000	
03/1		1528.00000000	2966	19.0000	0000	6.500	000000	31.10	000000	64.	00000000	1476.0	0000000	
03/2		1399.00000000	2993	82.0000	0000	7.100	000000	33.70	000000	63.	00000000	1106.0	0000000	
03/3		1605.00000000	3017	65.0000	0000	6.300	000000	47.10	000000	60.	00000000	1495.0	0000000	
03/4		1498.00000000	3001	76.0000	0000	6,500	000000	55.10	000000	60.	00000000	1408.0	0000000	
03/5		1750.00000000	3004	69.0000	0000	6.100	000000	61.70	000000	66.	00000000	1292.0	0000000	
03/6		1711.00000000	3087	40.0000	0000	7.300	000000	71.40	000000	68.	00000000	1374.0	0000000	
03/7		1809.0000000	3140	39.0000	0000	6,900	000000	77.80	000000	68.	00000000	1423.0	0000000	
03/8		1896.00000000	3060	95.0000	0000	7.300	000000	78.80	000000	70.	00000000	1360.0	0000000	
03/9		1363.00000000	3007	50.0000	0000	6.700	000000	70.50	000000	71.	00000000	1266.0	0000000	
03/10		1607.00000000	3029	02.0000	0000	7.000	000000	57.50	000000	70.	00000000	1621.0	0000000	
03/11		1491.00000000	3008	15.0000	0000	6.900	000000	53.10	000000	66.	00000000	1398.0	0000000	
03/12		1440.00000000	2956	79.0000	0000	6.600	000000	39.20	000000	66.	00000000	1403.0	0000000	
04/1		1528.00000000	2984	92.0000	0000	6.600	000000	30.60	000000	64.	00000000	1242.0	0000000	
04/2		1399.00000000	3021	92.0000	0000	6.700	000000	38.20	000000	63.	00000000	1457.0	0000000	
04/3		1605.00000000	3026	38.0000	0000	6.800	000000	48.90	000000	60.	00000000	1600.0	0000000	
04/4		1498.00000000	3012	52.0000	0000	6.700	000000	57.40	000000	60.	00000000	1722.0	0000000	
04/5		1750.00000000	2968	47.0000	0000	7.000	000000	71.90	000000	66.	00000000	1713.0	0000000	
04/6		1711.00000000	3035	74.0000	0000	7.700	000000	73.40	000000	68.	00000000	1741.0	0000000	
04/7		1809.00000000	3079	39.0000	0000	8.200	000000	78.60	000000	68.	00000000	1620.0	0000000	
04/8		1896.00000000	3002	39.0000	0000	8.300	000000	85.00	000000	72.	00000000	1588.0	0000000	

U.

Traditional techniques assumed a "set of models" and then selected that model that was deemed the "best" based.

The "Pick Best" Approached Favored by Some Software Packages

Model Selection List	×
Auto Model Fit	
🔽 Linear Trend	▲
Linear Trend with Autoregressive Errors	-
Linear Trend with Seasonal Terms	
🔽 Seasonal Dummy	
Simple Exponential Smoothing	
Double (Brown) Exponential Smoothing	
Linear (Holt) Exponential Smoothing	
Damped Trend Exponential Smoothing	
Seasonal Exponential Smoothing	
🔽 🛛 Winters Method Additive	
🔽 🛛 Winters Method Multiplicative	
🔽 🛛 Random Walk with Drift	
🗹 Airline Model	
ARIMA(0,1,1)s NOINT	
ARIMA(0,1,1)(1,0,0)s NOINT	
ARIMA(2,0,0)(1,0,0)s	
✓ ARIMA(0,1,2)(0,1,1)s NOINT	
🗹 ARIMA(2,1,0)(0,1,1)s NOINT	
✓ ARIMA(0,2,2)(0,1,1)s NOINT	

Yields Rather Uninteresting Results

Residuals Suggest a Poor Model

TING

S

If You Assume a Holt-Winters Model

Actuals, Fit, Forecasts, Lower & Upper Limits - TOTAL INTAKES

Residuals Suggest A Poor Model

Forecasts Institutionalize a False Seasonality

We wish to Model/Predict Total Intakes Using As Possible Predictor Variables:

Analysis for Variable Y = TOTAL_INTAKES X1 = TOTALREPCRIM X2 = TOTALCASES X3 = LABOR_FORCE X4 = UNEMPLOYMENT X5 = TEMP+DEF_F X6 = RH X7 = TOTAL_RELEASES

We wish to Model/Predict Total Intakes Using As Possible Predictor Variables:

Analysis for Variable Y = TOTAL_INTAKESX1 = TOTALREPCRIMusaoX2 = TOTALCASESusaoX3 = LABOR_FORCEdolX4 = UNEMPLOYMENTdolX5 = TEMP+DEF_Fwww.noaa.govX6 = RHwww.noaa.govX7 = TOTAL RELEASESdc doc

In attempting to formulate the model Y=Xb + V, classic multiple regression assumes the following:

.V is uncorrelated

.V has no outliers

.Relationship is contemporary

R Square = .719382

Y = TOTAL_INTAKES X1 = TOTALCASES X2 = TOTAL_RELEASES

Y(T) = 254.94 + X1(T)(.244) + X2(T)(.563) + V(T)

While Conducting Model Diagnostic Checking of the Assumed Model Y=Xb + V

AUTOBOX found

.V is significantly autocorrelated
.V has an inlier at 2003/4 (time point 16 is 71.9 higher than it should have been)
.There is a deterministic seasonal component for August (- 79.4)
.Relationship is dynamic (multiple-lagged)

V(T)= A(t)+Omitted Lags of the Causals + A Seasonal Pulse + An Inlier + Autocorrelation

We have a case where causals were incorrectly rejected due to the inflated variance of the errors.

A Transfer Function Model is also called Generalized Least Squares as it incorporates both non-constant variance and correlated data opportunities.

Combining Causals, Memory and Dummy Variables

History of Intakes and Forecasts with 95% Limits

torical Data Future	Values Forecast Data Graph	Benorts	WhatIf		
t-					
	VARIABLE	LAG	REGRESSION		
INTRVENT.HTM			COEFFICIENT		
EQUATION.TXT					
VERBAL.TXT	TOTALREPCRIM	0	.109473		
STAT.HTM		1	158757		
RHSIDE.TXT		2	.089026		
	TOTALCASES	0	.385059		
		1	558409		
		2	.313137		
	LABOR FORCE	1	_ 000004		
	LABOR_FORCE	2	009094		
		3	- 007395		
		0	.001050		
	UNEMPLOYMENT	1	121.749462		
		2	-14.318887		
		3	-85.956013		
		4	58.969877		
		5	40.917930		
	TEMP+DEF_F	1	-8.378548		
		2	17.266206		
		3	-14.232346		
		4	4.160186		
	TOTAL DELEASES	0	231710		
	TOTAL_RELEASES	1	- 336037		
		2	- 188439		
		-	. 100 100		
	I~SOOOOSTOTAL INTAKES	Ο	-79.396684		
	_	1	115.140462		
		2	-64.566921		
	TOTAL_INTAKES	1	1.450192		
		2	813219		

					·	·					
storical Data	Future Va	lues Forec	ast Data 🛽	Graph	Reports	WhatIf					
ports		MODEL ST	ATISTIC	S AND EOUA	TION FOR THE	CURRENT EO	UATION (D)	ETAILS FOL	LOW).		
DETAILS	б.НТМ			··· ··· ··· ··· ··· ··· ··· ··· ··· ··							
INTRVE	NT.HTM	Estimati	on/Diag	nostic Che	cking for Va	ariable Y =	TOTAL INT	TAKES			
EQUATI	ON.TXT					X1 =	TOTALREP	CRIM			
VERBAL	.TXT					X2 =	TOTALCASI	ES			
STAT.H	ТМ					X3 =	LABOR_FOR	RCE			
RHSIDE	.TXT					X4 =	UNEMPLOYI	MENT			
						X5 =	TEMP+DEF_	_F			
						X6 =	TOTAL_REI	LEASES			
			:	NEWLY IDE	NTIFIED VARD	IABLE X7 =	I~S00008	2002/ 8	SEASP		
			:	NEWLY IDE	NTIFIED VARD	IABLE X8 =	I~P00016	2003/ 4	PULSE		
				MODEL STAT	ISTICS IN TH	CRMS OF THE	ORIGINAL I	DATA			
			Number	of Residua	ls (R)	=n		27			
			Number	of Degrees	of Freedom	=n-m		13			
			Residua	al Mean		=Sum R	/n -	-4.23168			
			Sum of	Squares		=Sum R*	*2	45754.3			
			Varianc	e		var=SOS/ (n)	1694.60			
			Adjuste	d Variance		=SOS/(n)	-m)	3519.56			
			Standar	d Deviatio	n	=SQRT (A	dj Var)	59.3259			
			Standar	d Error of	the Mean	=Standa	rd Dev/	16.4540			
			Mean /	its Standa	rd Error	=Mean/S	EM -	257182			
			Mean Ab	solute Dev	iation	=Sum (AB)	S(R))/n	32.5775			
			AIC Val	ue (Uses .	var)	=nln $+$	2m	228.750			
			SBC Val	ue (Uses)	var)	=nln $+$	m*lnn	246.892			
			BIC Val	ue (Uses .	var)	=see We	i p153	195.943			
			R Squar	e 		-	++	.901626			
			Jurbin-	watson Sta	tistic	=[A-A(T-1)]	**2/#**2	1.52442			
		D-W	STATIS	TIC IS INC	ONCLUSIVE.						
		THE DUR	BIN-WAT	SON STATIS	TIC IS VALII	ONLY FOR M	ODELS THAT	T HAVE NO	ARIMA		
		COMPONE	NT AND	NO LAGS OF	THE Y SERIE	S OTHERWISE	IT IS INV	VALID.			
		IN THIS	CASE T	HE TEST IS	INVALID.						
		•									•
nt Status	Engine =	• M								10/4/2004	8:58 AM

storical Data Future \	/alues Forecast Data Graph	Reports	WhatIf				
DETAILS.HTM	1CONSTANT 2 Autoregressive-Fa 3	ctor # 1	317. 1 1.45 2813	280. .998E-01 .982E-01	.2717 .0000 .0000	1.13 14.53 -8.28	
VERBAL.TXT STAT.HTM RHSIDE.TXT	INPUT SERIES X1 TO 40mega (input) -Fa	DTALREPCRIM	0 .109	.333E-01	.0041	3.29	
	INPUT SERIES X2 TO	TALCASES					
	50mega (input) -Fa	actor # 3	0.385	.492E-01	.0000	7.83	
	INPUT SERIES X3 LJ	BOR_FORCE					
	60mega (input) -Fa	ictor # 4	1909E-02	.287E-02	.0054	-3.17	
	70mega (input) -Fa	actor # 5	1 122.	25.2	.0001	4.83	
	8 9		2 -162. 3 -50.3	34.8 19.6	.0002 .0195	-4.66 -2.56	
	INPUT SERIES X5 TH	MP+DEF_F					
	100mega (input) -Fa 11	ctor # 6	1 -8.38 2 -5.12	2.24 2.41	.0015 .0479	-3.74 -2.12	
	INPUT SERIES X6 TO	TAL_RELEASES					
	120mega (input) -Fa	ictor # 7	0.232	.638E-01	.0019	3.63	
	INPUT SERIES X7 I-	\$00008 2002/	8 SEASP				
	130mega (input) -Fa	P00016 2002/	0 -79.4	24.8	.0049	-3.21	
	140mega (input) -Fa	r00016 2003/ actor # 9	4 PULSE	31.2	.0335	2.30	
							Þ

storical D	ata Future Values		Forecast Data	Forecast Data 🎽 Graph		Reports		WhatIf				
	тот/		TOTALCASES	LABOR FO	DRCE	UNEMF	LOYMEN	TEM	P+DEF F	BH	TOTAL RELEASES	
04/9	14	2600.00000000	1300.0000000	291100.	00000000	7	.58600000	7	73.39000000	71.00000000	1418.00000000	
04/10	í.	2700.00000000	1400.0000000	291900.	00000000	7	.05500000	ε	61.14000000	70.0000000	1380.0000000	
04/11	14	2700.00000000	1350.0000000	302100.1	00000000	6	.68400000	5	57.32000000	66.0000000	1362.0000000	

storical Dal	a Future Values	Forecast Data	Graph	Reports	WhatIf)
	TOTAL INTAKES					
2004/5	1652.277709	977				
2004/6	1870.057938	692				
2004/7	1719.925210	075				

nt Status	Engine = M	10/4/2004	9:00 AM

A Forecasting Model is a Planning Tool Not Just An End In Itself !

Impact Assessment <> What if Unemployment Slowly Rises?

AUTOMATIC FORECASTING S T E M S

_ 8 ×

CAUSAL3.ASC FreeFore Professional Build: 0.1.30

ĺ	Historical D	ata F Run BunWbatIf	orecast Data	Graph Rep	ports What	lf			
		TOTALREPCRIM	TOTALCASES	LABOR FORCE	UNEMPLOYMEN	TEMP+DEF F	RH	TOTAL RELEASES	
	2004/9	2600.00000000	1300.00000000	291100.00000000	7.8000000	73.39000000	71.00000000	1418.00000000	
	2004/10	2700.00000000	1400.00000000	291900.0000000	7.9000000	61.14000000	70.0000000	1380.0000000	
	2004/11	2700.00000000	1350.00000000	302100.00000000	8.0000000	57.32000000	66.0000000	1362.00000000	

storical Data	Future Values	Forecast Data	Graph	Reports	WhatIf	
	TOTAL INTAKE	S				
2004/9	1652.2777	0977				
2004/10	1896.1123	2177				
2004/11	1857.5231	3329				

ne = M	ne = M	10/4/2004 9:
--------	--------	--------------

<u>E</u> dit <u>V</u> iew	Insert Format	: <u>T</u> ools <u>D</u> al	ta <u>W</u> indow	<u>H</u> elp Acro <u>b</u> a	at									
2 🔒 🔒	🥝 🎒 🙆	. 💞 🐰	🗈 🛍 🝼	$\infty + \infty$	- 🤮 Σ 🤅	f≈ <mark>2</mark> ↓ <mark>2</mark> ↓	, 🛍 🚜 10	00% 👻 🙎) - (
	- 10 -	BI	u ≡ ≡		\$%,	+.0 .00 4 •.0 +.0		- 🕭 - <u>A</u>	• •					
2							· · · · —							
EI H2	- =													
														1-
Book1	D		D	E	E							M	N	
		U U	U		Г	G	<u> </u>		J	ĸ	L	IVI	IN	0
	_							SCENARI	0					
							L			2				
										2				
					UNEMPLO	YMENT	INTAKES		UNEMPLO	YMENT	INTAKES			
			2004/9		7.586		1652		7.8		1652			
			2004/10		7.055		1870		7.9		1896			
			2007/11		6 694		1719		9		1957			
			2004/11		0.004		1715		0		1007			
(eet1 / Sheet2	2 <u>/</u> Sheet3 .	/						↓					•

A Memory Component in a Causal Model is a Proxy for an Omitted Variable

If Y(T) = [X(T)] + g[Z(T)] + A(T) and you omit Z(T) then Y(T) = [X(T)] + V(T) where V(T) = g[Z(T)] + A(T).

If Z(T) is an auto-projective sequence then V(T) will be autoprojective and thus auto-correlated yielding V(T)=[T(B)/P(B)] A(T)

Y(T) = X(T) + [T(B)/P(B)] A(T)

where {T(B)/P(B)}=ARMA model for unobserved series Z(T)

Intervention Analysis/AIA References

- Box, G.E.P., and Jenkins, G.M. (1976). Time Series Analysis: Forecasting and Control, 2nd ed. San Francisco: Holden Day.
- Box, G.E.P., and Tiao, G. (1975). "Intervention Analysis with Applications to Economic and Environmental Problems," Journal of the American Statistical Association, Vol 70, pp. 70-79.
- Chang, I., and Tiao, G.C. (1983). "Estimation of Time Series Parameters in the Presence of Outliers," Technical Report #8, Statistics Research Center, Graduate School of Business, University of Chicago, Chicago.
- McCleary, R., and Hay, R. (1980). Applied Time Series Analysis for the Social Sciences. Los Angeles: Sage.

Intervention Analysis/AIA References

- Reilly, D.P. (1980). "Experiences with an Automatic Box-Jenkins Modeling Algorithm," in Time Series Analysis, ed. O.D. Anderson. (Amsterdam: North-Holland), pp. 493-508.
- Reilly, D.P. (1987). "Experiences with an Automatic Transfer Function Algorithm," in Computer Science and Statistics Proceedings of the 19th Symposium on the Interface, ed. R.M. Heiberger, (Alexandria, VI: American Statistical Association), pp. 128-135.
- Tsay, R.S. (1986). "Time Series Model Specification in the Presence of Outliers," Journal of the American Statistical Society, Vol. 81, pp. 132-141.
- Wei, W. (1989). Time Series Analysis Univariate and Multivariate Methods. Redwood City: Addison Wesley.

Boston Armed Robbery References

Boston Armed Robbery References

Campbell, D.T. and J.C. Stanley (1966), Experimental and Quasi-Experimental Designs For Research. Chicago: Rand-McNally

Chang, I., and Tiao, G.C. (1983). "Estimation of Time Series Parameters in the Presence of Outliers," Technical Report #8, Statistics Research Center, Graduate School of Business, University of Chicago, Chicago.

Deutsch, S.J. and F.B. Alt (1977)," The Effect of Massachusetts gun control law on gun-related crimes in the city of Boston" Evaluation Quarterly, 1, 543-568.

McCleary, R., and Hay, R. (1980). Applied Time Series Analysis for the Social Sciences. Los Angeles: Sage.

Reilly, D.P. (1980). "Experiences with an Automatic Box-Jenkins Modeling Algorithm," in Time Series Analysis, ed. O.D. Anderson. (Amsterdam: North-Holland), pp. 493-508.

Reilly, D.P. (1987). "Experiences with an Automatic Transfer Function Algorithm," in Computer Science and Statistics Proceedings of the 19th Symposium on the Interface, ed. R.M. Heiberger, (Alexandria, VI: American Statistical Association), pp. 128-135.

Tsay, R.S. (1986). "Time Series Model Specification in the Presence of Outliers," Journal of the American Statistical Society, Vol. 81, pp. 132-141.

Wei, W. (1989). Time Series Analysis Univariate and Multivariate Methods. Redwood City: Addison Wesley.

Did Getting Tough On Boston Criminals Pay ? *

- In April of 1975, Massachusetts enacted a gun control law relating to armed robbery. It is natural to want to asses the impact of the law on the incidence of armed robberies in different geographical areas.
- One approach is to use historical data on Boston Armed Robberies from March, 1972 to March, 1975 (111 values) to develop a forecast and then to compare the actual for the next set of periods (7) up to and including October 1975 (period 118).
- We present the history, forecasts and a comparison.

* with acknowledgement to Dr.William Sabol

7

💌 🗙 🗸 = 1975/OCT

Book1	k1													
A	В	С	D	E	F	G	Н		J	K	L	М	N	0
			ACTUALS		FORECAS	TS								
_														
117			2.72		2.5520.40									
112	2 1975/APRIL 2 1075/APRIL		3.72		3.552649									
113	1975/WAT		3.02		3.695066									
114	5 1975/ ILLI V		3.98		3 911189									
116	5 1975/AUG		3.94		4 237743									
117	7 1975/SEP		4.31		3.958033									
118	3 1975/OCT		4.31		3.992282									
	· · · · ·													
			26.44		26.8									
_														
-														
()) \Sh	eet1 / Sheet2	/ Sheet3							•					•

Did Getting Tough On Boston Criminals Pay ? *

 Another approach, leading directly to a formal statistical test is to explicitly introduce as a supporting variable an Event Variable reflecting the known introduction of the law.he impact of the law on the incidence of armed robberies.

 $Z_{t} = 0, 0, 0, 0, \dots, 1, 1, 1, 1, 1, \dots, T$

or $Z_t = 0$ t < i

 $Z_t = 1$ t > i-1

N.B. that this is not Intervention Detection as the variable is known and not detected

orical Da	ta Future Values	Forecast Data	Graph	Reports		
	INCIDENCE	LAW				
72/10	2.47000000	0.0000000			Series Properties	
72/11	2.57000000	0.0000000				
72/12	3.22000000	0.0000000			Observations: 1	18 🗧
73/1	2.98000000	0.00000000				
73/2	2.73000000	0.00000000			Forecasts:	12 🛨
73/3	3.12000000	0.0000000			Corioo:	2
73/4	2.49000000	0.00000000			Jenes. j	
73/5	2.86000000	0.00000000			Major Period:	1966
73/6	2.79000000	0.00000000			Minor Period	1
73/7	3.09000000	0.00000000				<u> </u>
73/8	4.01000000	0.00000000			Frequency:	12
73/9	3.09000000	0.00000000				
73/10	3.28000000	0.00000000			Apply C	ancel
73/11	3.53000000	0.00000000				
73/12	3.54000000	0.00000000				
74/1	3.27000000	0.0000000				
/4/2	3.24000000	0.00000000				
74/3	2.85000000	0.00000000				
74/4	2.43000000	0.00000000				
74/5	2.41000000	0.00000000				
74/6	2.0000000	0.00000000				
74/7	4 6000000	0.00000000				
74/0	3.64000000	0.00000000				
74/3	4 87000000	0.00000000				
74/10	4 52000000	0.00000000				
74/12	3,91000000	0.00000000				
75/1	5.00000000	0.00000000				
75/2	4.51000000	0.00000000				
75/3	3.75000000	0.00000000				
75/4	3.72000000	1.00000000				
75/5	3.02000000	1.00000000				
75/6	3.16000000	1.00000000				
75/7	3.98000000	1.00000000				
75/8	3.94000000	1.00000000				
75/9	4.31000000	1.00000000				
75/10	4.31000000	1.00000000				
nt Status	Engine = M	1			9/30/2004	8:00 AM

USING ALL 118 VALUES

View O	ptions l	Process	He	lp –
--------	----------	---------	----	------

storical Data Future \	Values Forecast Data Graph Reports	
Ports DETAILS.HTM INTRVENT.HTM EQUATION.TXT VERBAL.TXT STAT.HTM	THE ESTIMATED MODEL PARAMETERS MODEL COMPONENT LAG COEFF STANDARD P T # (BOP) ERROR VALUE VALUE	
	1CONSTANT .435E-01 .0999 1.66 2Autoregressive-Factor # 1 1.972 .231E-01 .0000 42.09 3Autoregressive-Factor # 2 2.257 .976E-01 .0096 -2.64 4Moving Average-Factor # 3 1 .363 .103 .0006 3.54 INPUT SERIES X1 LAW	
	50mega (input) -Factor # 4 0112 .907 .902112 Y(T) = .77504 +[X1(T)][(112)] + [(1972B** 1)(1+ .257B** 2)]**-1 [(1363B** 1)] [A(T)]	
	A NON-CONSTANT ERROR VARIANCE HAS BEEN REMEDIED VIA WEIGHTED ESTIMATION CULMINATING AS A GENERALIZED LEAST SQUARES MODEL WITH A HOMOSCEDASTIC ERROR PROCESS. DIRECTION TIME DATE F VALUE P VALUE (T)	
	INCREASING 54 1970/ 6 7.73213 .0000 Since the automatic model fixup option for the variance stability test is enabled, the program will now estimate the parameters of the model with a set of weights that adjusts the residuals to account for the variance change(s).	
		Þ

storical Data Future V	/alues Forecast Data Graph Reports
Ports DETAILS.HTM INTRVENT.HTM EQUATION.TXT VERBAL.TXT	THE ESTIMATED MODEL PARAMETERS
STAL HIM	MODEL COMPONENT LAG COEFF STANDARD P T # (BOP) ERROR VALUE VALUE
	1CONSTANT .118 .451E-01 .0100 2.62 2Autoregressive-Factor # 1 1 .590 .826E-01 .0000 7.14 3Autoregressive-Factor # 2 12 .510 .102 .0000 5.00
	INPUT SERIES X1 I~T00053 1970/ 5 TIME
	40mega (input) -Factor # 3 0 .476E-01 .100E-01 .0000 4.76
	INPUT SERIES X2 I~LOOO28 1968/ 4 LEVEL
	50mega (input) - Factor # 4 0 .522 .802E-01 .0000 6.50
	Y(T) = .58902 +[X1(T)][(+ .048)] +[X2(T)][(+ .522)] + [(1590B** 1)(1510B** 12)]**-1 [A(T)]
	A NON-CONSTANT ERROR VARIANCE HAS BEEN REMEDIED VIA WEIGHTED ESTIMATION CULMINATING AS A GENERALIZED LEAST SQUARES MODEL WITH A HOMOSCEDASTIC ERROR PROCESS.
	DIRECTION TIME DATE F VALUE P VALUE (T)
	INCREASING 54 1970/ 6 7.73213 .0000

